Should be the last one

Table of Contents

  1. Lec 8 Linear feedback controllers, s.s. observers
    1. I. Lyapunov method
      1. a. Properties
      2. b. Lyapunov Theorem
      3. c. Example
    2. II. State Feedback design
      1. a. Scenary
      2. b. Example
      3. c. MATLAB realization
      4. d. Modal Control
      5. e. Example
      6. f. Observer Design
      7. g. Example
      8. h. MATLAB realization
    3. III. Combinition

Lec 8 Linear feedback controllers, s.s. observers


I. Lyapunov method

a. Properties

Let us consider Lyapunov functions for investigation stability of linear systems. Lyapunov functions have the next properties:

  • Lyapunov function V (π‘₯) must be positive definite: for any π‘₯ ∈ 𝑅𝑛
  • Lyapunov function V (π‘₯) is positive definite and V (π‘₯) = 0 in case π‘₯ is null-vector (zero).
  • Lyapunov functions must increases (decreases) uniformly with uniform increasing (decreasing) of π‘₯-vector norm.

That is, $\lim_{x\to 0}V(x)=0$ and $\lim_{x\to \infty}V(x)=\infty$

b. Lyapunov Theorem

The equilibrium π‘₯ = 0 is asymptotic stable if exists Lyapunov function V (π‘₯) such that for any motion trajectories π‘₯(𝑑) starting from the arbitrary initial conditions for any time βˆ€π‘‘ β‰₯ 0 the derivative of the function is negative: $\frac{dV(x(t))}{dt} < 0$.

lt0

c. Example

eg0

eg1

eg2

II. State Feedback design

a. Scenary

sfd1

sfd0

  • note that the original inequality doesn’t have LMI.

b. Example

eg3

  • In u(t) there should be a minus sign.

c. MATLAB realization

ML0

d. Modal Control

mc0

  • ita and gamma in capital.

mc1

mc2

e. Example

eg4

eg5

eg6

eg7

  • -BKM=-BH

eg8

eg8

f. Observer Design

ob0

  • In former lectures, we assumed that we obtain all states from output, but in practice, all states requries more moeny for sensors.
  • Observer helps to see state that can’t be obtained directly.

ob1

ob2

ob3

g. Example

eg10

h. MATLAB realization

ml1

III. Combinition

cb0